Циклическое число
Многие числовые курьезы могут быть эффектно показаны в виде карточных фокусов. Подтверждает это следующий фокус, опубликованный в 1942 году фокусником Лойдом Джонсом (Lloyd Jones) из Оклахомы, штат Калифорния. Он основан на том, что если умножить «циклическое число» 142857 на любое целое число от 2 до 6, то получится число, составленное из тех же цифр с круговой (циклической) их перестановкой.
Фокус состоит в следующем. Зрителю даются пять карт красной масти, имеющие числовые значения 2, 3, 4, 5 и 6. Себе же показывающий берет шесть карт черной масти, размещая их так, чтобы их числовые значения соответствовали цифрам числа 142857.
Как показывающий, так и зритель тасуют свои карты; при этом показывающий только делает вид, что тасует, а в самом деле сохраняет их порядок неизменным. (Этого можно легко добиться, дважды перекладывая карты по одной с одной стороны колоды на другую. Быстрое выполнение этой операции создает полное впечатление тасовки, хотя весь эффект состоит в том, что расположение карт дважды меняется на обратное, оставляя таким образом первоначальный порядок неизменным.)
Фокусник сдает свои карты лицевой стороной кверху, образуя число 142857. Зритель вытягивает одну из своих карт и кладет ее лицевой стороной вверх под рядом, разложенным показывающим. С помощью карандаша и бумаги зритель перемножает наше число на числовое значение вытянутой им карты.
Пока он занят этим делом, показывающий собирает свои карты, накладывая на первую слева карту соседнюю, затем на нее соседнюю и т. д., «снимает» их один раз и снова кладет на стол кучкой (лицевой стороной книзу). После того как зритель выполнит умножение, показывающий берет свою кучку карт и снова раскладывает их слева направо лицевой стороной кверху. Шестизначное число, которое при этом получается, в точности совпадает с результатом умножения, найденным зрителем.
Объяснение. Карты черной масти показывающий собирает, не нарушая порядка, в котором они были разложены. Допустим, что зритель умножал наше число на 6; тогда произведение должно оканчиваться двойкой, так как шесть раз по семь (это последняя цифра множимого) будет сорок два.
Если снять так, чтобы двойка оказалась внизу, то после того как карты будут разложены в ряд, она окажется последней картой и изображаемое картами число совпадет с ответом, полученным зрителем. (Для более поздней версии доктора Е. Г. Эрвина (Dr. E. G. Ervin) в которой выписывается циклическое число и множитель получается вращением игральной кости, смотрите «Практические умственные эффекты Аннемана» (Anneman’s Practical Mental Effects) 1944 года, с. 106)
Циклическое число 142857 является обратным по отношению к простому числу 7 в том смысле, что оно получается от деления 1 на 7. Выполняя это деление, мы получаем бесконечную периодическую дробь с периодом, совпадающим с нашим циклическим числом. Другие, большие, циклические числа также можно получить путем деления единицы на большие простые числа.